Consorcio tripartito de hongo-levadura-bacteria mejora el desempeño agronómico en el crecimiento temprano del maíz
Palavras-chave:
Diseño de consorcios, pruebas de compatibilidad, pruebas de germinación, levaduras promotoras de crecimiento vegetal, arquitectura vegetalResumo
https://doi.org/10.21929/abanicomicrobiano/2025.1
Clave: 2025-1
Referências
AGBOWURO G, Ayeyo ME, Emecho TS. 2021. The use of microbial inoculants in crop production for food security sustainability. Adv. J. Grad. Res. 10:33-40.
https://doi.org/10.21467/ajgr.10.1.33-40
ARMINJON L, Lefort F. 2025. Quick in vitro screening of PGPMs for salt tolerance and evaluation of induced tolerance to saline stress in tomato culture. Microorganisms. 13: 246. https://doi.org/10.3390/microorganisms13020246
BAILEY BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Samuels GJ, Choi IY, Holmes KA. 2006. Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta. 224:1449-1464. https://doi.org/10.1007/s00425-006-0314-0
BALDANI JI, Reis VM, Videira SS, Boddey LH, Baldani VLD. 2014. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil. 384:413-431.
https://doi.org/10.1007/s11104-014-2186-6
CALVILLO-AGUILAR FF, Cruz-Cárdenas CI, Chávez-Díaz IF, Sandoval-Cancino G, Ruiz-Ramírez S, Bautista-Ramírez E, Ramos-Garza J, Hernández-Rodríguez CH, Zelaya-Molina LX. 2023. Germination test for the evaluation of plant-growth promoting microorganisms. J. Microbiol. Methods. 207, e106708.
https://doi.org/10.1016/j.mimet.2023.106708
CARDARELLI M, Woo SL, Rouphael Y, Colla G. 2022. Seed Treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops. Plants. 11, e259. https://doi.org/10.3390/plants11030259
CARVAJAL M, Godoy L, Gebauer M, Catrileo D, Albornoz F. 2024. Screening for indole-3-acetic acid synthesis and 1-aminocyclopropane-carboxylate deaminase activity in soil yeasts from Chile uncovers Solicoccozyma terrea as an effective plant growth promoter. Plant Soil. 496:83–93. https://doi.org/10.1007/s11104-023-05906-x
CHÁVEZ-DÍAZ IF, Plascencia-Ulloa E, Resendiz-Venado Z, Zelaya-Molina LX, Reynoso-Santos R, Chávez-Aguilar G. 2022. Biodiversidad fúngica asociada a suelos como medida de calidad fitosanitaria: Caso de estudio. Rev. Int. Universo Agroaliment. 2:29-33. https://www.lasallebajio.edu.mx/documents/agroalimentario/06%20V2%20Universo%20Agroalimentario%20Ed.%206%20feb-abri%202022.pdf?20250513204706
CHÁVEZ-DÍAZ IF, Zavaleta-Mejía E, 2019. Molecular communication in the pathosystem Capsicum species -Phytophthora capsici. Mex. J. Phytopathol. 37.
https://doi.org/10.18781/R.MEX.FIT.1901-3
CHEN W, Ye T, Sun Q, Niu T, Zhang J. 2021. Arbuscular mycorrhizal fungus alters root system architecture in Camellia sinensis L. as revealed by RNA-Seq analysis. Front. Plant Sci. 12. https://doi.org/10.3389/fpls.2021.777357
DE OLIVEIRA-PAIVA CA, Bini D, de Sousa SM, Ribeiro VP, dos Santos FC, de Paula Lana UG, de Souza FF, Gomes EA, Marriel IE. 2024. Inoculation with Bacillus megaterium CNPMS B119 and Bacillus subtilis CNPMS B2084 improve P-acquisition and maize yield in Brazil. Front. Microbiol. 15.
https://doi.org/10.3389/fmicb.2024.1426166
DI FRANCESCO A, Zajc J, Stenberg JA, 2023. Aureobasidium spp.: Diversity, Versatility, and Agricultural Utility. Horticulturae. 9, e59.
https://doi.org/10.3390/horticulturae9010059
DOS REIS GA, Martínez-Burgos WJ, Pozzan R, Pastrana Puche Y, Ocán-Torres D, de Queiroz Fonseca Mota P, Rodrigues C, Lima Serra J, Scapini T, Karp SG, Soccol CR. 2024. Comprehensive review of microbial inoculants: agricultural applications, technology trends in patents, and regulatory frameworks. Sustainability. 16, e8720. https://doi.org/10.3390/su16198720
GAYOSSO-BARRAGÁN O. Chávez-Aguilar G, Reynoso-Santos R, Chávez-Díaz IF, Zelaya-Molina LX, Alcalá-Rico JSGJ. 2023. Efecto de la inoculación de rizobacterias promotoras del crecimiento vegetal en maíz de temporal en el altiplano semiárido de México. Cienc. Tecnol. Agropecu. 11:156.
https://www.somecta.org.mx/wp-content/uploads/2023/08/Memorias_Somecta.pdf
GORDON SA, Weber RP. 1951. Colorimetric Estimation of indoleacetic Acid. Plant Physiol. 26:192–195. https://doi.org/10.1104/pp.26.1.192
GUZMÁN M del PR, Díaz IFC, Molina LXZ. 2025. “Reflexions on the role, diversity, conservation and management of the genetic microbial resources in Agriculture”. Curr. Res. Microb. Sci. 8, e100365. https://doi.org/10.1016/j.crmicr.2025.100365
HOSSAIN MM, Sultana F, Hossain MM, Sultana F. 2020. Application and mechanisms of plant growth promoting fungi (PGPF) for phytostimulation, in: organic agriculture. IntechOpen. https://doi.org/10.5772/intechopen.92338
KAMRAN S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz, S., 2017. Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front. Microbiol. 8. https://doi.org/10.3389/fmicb.2017.02593
KHAEIM H, Kende Z, Jolánkai M, Kovács GP, Gyuricza C, Tarnawa Á. 2022. Impact of temperature and water on seed germination and seedling growth of maize (Zea mays L.). Agronomy. 12, e397. https://doi.org/10.3390/agronomy12020397
LIU X, Wang Z, Xiao J, Zhou X, Xu Y. 2022. Osmotic stress tolerance and transcriptome analysis of Gluconobacter oxydans to extra-high titers of glucose. Front. Microbiol. 13. https://doi.org/10.3389/fmicb.2022.977024
LUO D, Shi J, Li M, Chen J, Wang T, Zhang Q, Yang L, Zhu N, Wang Y. 2024. Consortium of phosphorus-solubilizing bacteria promotes maize growth and changes the microbial community composition of rhizosphere soil. Agronomy. 14, e1535.
https://doi.org/10.3390/agronomy14071535
LUO M, Shi Z, Yang S, Zhang M, Wu S, Zhang M. 2022. Mycorrhizal types regulated the responses of biomass in different plant organs to N addition. Agronomy. 12, e2357. https://doi.org/10.3390/agronomy12102357
LUZIATELLI F, Nobili A, Nardilli F, Ruzzi M. 2023. Importance of microbial exo-metabolites as postbiotics for sustainable agriculture. Open Access J. Microbiol. Biotechnol. 8:1-4. https://doi.org/10.23880/oajmb-16000257
LV L, Luo J, Ahmed T, Zaki HEM, Tian Y, Shahid MS, Chen J, Li B. 2022. Beneficial effect and potential risk of pantoea on rice production. Plants. 11, e2608.
https://doi.org/10.3390/plants11192608
MACIAG T, Kozie? E, Rusin P, Otulak-Kozie? K, Jafra S, Czajkowski R. 2023. Microbial consortia for plant protection against diseases: more than the sum of its parts. Int. J. Mol. Sci. 24, e12227. https://doi.org/10.3390/ijms241512227
MANDI? V, Krnjaja V, Simi? A, Petri?evi? M, Gogi? M, Brankov M, Stanojkovi? A. 2023. Effect of pH on germination and seedling growth of maize. Biotechnol. Anim. Husb. 39:195-203. https://doi.org/10.2298/BAH2302195M
MARZBAN A, Ebrahimipour G, Karkhane M, Teymouri M. 2016. Metal resistant and phosphate solubilizing bacterium improves maize (Zea mays) growth and mitigates metal accumulation in plant. Biocatal. Agric. Biotechnol. 8:13–17.
https://doi.org/10.1016/j.bcab.2016.07.005
MEHTA S, Nautiyal CS. 2001. An Efficient Method for Qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol. 43:51–56.
https://doi.org/10.1007/s002840010259
METWALLY RA, Abdelhameed RE, Soliman SA, Al-Badwy AH. 2022. Potential use of beneficial fungal microorganisms and c-phycocyanin extract for enhancing seed germination, seedling growth and biochemical traits of Solanum lycopersicum L. BMC Microbiol. 22, e108. https://doi.org/10.1186/s12866-022-02509-x
PAL G, Kumar K, Verma A, Verma SK. 2022. Seed inhabiting bacterial endophytes of maize promote seedling establishment and provide protection against fungal disease. Microbiol. Res. 255, e126926. https://doi.org/10.1016/j.micres.2021.126926
PARMAR P, Sindhu SS. 2019. The novel and efficient method for isolating potassium solubilizing bacteria from rhizosphere soil. Geomicrobiol. J. 36:130-136.
https://doi.org/10.1080/01490451.2018.1514442
PÉREZ-MONCADA UA, Santander C, Ruiz A, Vidal C, Santos C, Cornejo P. 2024. Design of microbial Consortia Based on Arbuscular Mycorrhizal Fungi, Yeasts, and Bacteria to Improve the biochemical, nutritional, and physiological status of strawberry plants growing under water deficits. Plants. 13, e1556.
https://doi.org/10.3390/plants13111556
PRIGIGALLO MI, Staropoli A, Vinale F, Bubici G. 2023. Interactions between plant?beneficial microorganisms in a consortium: Streptomyces microflavus and Trichoderma harzianum. Microb. Biotechnol. 16:2292-2312. https://doi.org/10.1111/1751-7915.14311
RAMOS-GARZA J, Aguirre-Noyola JL, Bustamante-Brito R, Zelaya-Molina LX, Maldonado-Hernández J, Morales-Estrada AI, Resendiz-Venado Z, Palacios-Olvera J, Angeles-Gallegos T, Terreros-Moysen P, Cortés-Carvajal M, Martínez-Romero E. 2023. Mycobiota of mexican maize landraces with auxin-producing yeasts that improve plant growth and root development. Plants. 12, e1328.
https://doi.org/10.3390/plants12061328
RESENDIZ-VENADO Z, Zelaya-Molina LX, Chávez-Díaz IF, Chávez-Aguilar G, Reynoso R, Cruz-Cárdenas CI, Bautista-Ramírez E. 2022. Rizobacterias promotoras de crecimiento vegetal aisladas de suelos rizosféricos de la región de la frailesca, Chiapas. Cienc. Tecnol. Agropecu. 10:45–52. https://www.somecta.org.mx/wp-content/uploads/2023/01/Memoria-SOMECTA-2022.pdf
R Core Team. 2024. R: A language and environment for statistical computing. R foundation for statistical computing. https://www.R-project.org/
RStudio Team. 2024. RStudio: Integrated development environment for R. RStudio, PBC. https://www.posit.co/products/open-source/rstudio/
RUIZ-RAMÍREZ S, Zelaya-Molina LX, Hernández-Martínez R, Chávez-Díaz IF, Aranda-Lara U, Reynoso-Santos R, Chávez-Aguilar G, Valdez-Hernández MÁ. 2024. Stenotrophomonas sp. LIMN, Enterobacter sp. LCMG, and Rhizobium sp. WFRFC: a bacterial consortium in the production of Zea mays L. under different agronomic management practices. Agro Product. https://doi.org/10.32854/agrop.v17i9.3030
SCHWYN B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56. https://doi.org/10.1016/0003-2697(87)90612-9
SETHI SK. 2024. Bioprospecting of endophytic diazotrophic microbes in sustainable agriculture: Review and prospects. Res. J. Biotechnol. 19:128-137.
https://doi.org/10.25303/1907rjbt1280137
SLEPECKY RA, Starmer WT. 2009. Phenotypic plasticity in fungi: a review with observations on Aureobasidium pullulans. Mycologia. 101:823–832.
https://doi.org/10.3852/08-197
SZKOP M, Sikora P, Orzechowski S. 2012. A novel, simple, and sensitive colorimetric method to determine aromatic amino acid aminotransferase activity using the Salkowski reagent. Folia Microbiol. 57:1-4. https://doi.org/10.1007/s12223-011-0089-y
TABACCHIONI S, Passato S, Ambrosino P, Huang L, Caldara M, Cantale C, Hett J, Del Fiore A, Fiore A, Schlüter A, Sczyrba A, Maestri E, Marmiroli N, Neuhoff D, Nesme J, Sørensen SJ, Aprea G, Nobili C, Presenti O, Giovannetti G, Giovannetti C, Pihlanto A, Brunori A, Bevivino A. 2021. Identification of beneficial microbial consortia and bioactive compounds with potential as plant biostimulants for a sustainable agriculture. Microorganisms. 9, e426. https://doi.org/10.3390/microorganisms9020426
TYAGI J, Mishra A, Kumari S, Singh S, Agarwal H, Pudake RN, Varma A, Joshi NC. 2023. Deploying a microbial consortium of Serendipita indica, Rhizophagus intraradices, and Azotobacter chroococcum to boost drought tolerance in maize. Environ. Exp. Bot. 206, e105142. https://doi.org/10.1016/j.envexpbot.2022.105142
WANG Q, Zhang X, Xie Q, Tao J, Jia Y, Xiao Y, Tang Z, Li Q, Yuan M, Bu T. 2024. Exploring plant growth-promoting traits of endophytic fungi isolated from Ligusticum chuanxiong hort and their Interaction in plant growth and development. J. Fungi. 10, e713. https://doi.org/10.3390/jof10100713
WU D, Wang W, Yao Y, Li H, Wang Q, Niu B. 2023. Microbial interactions within beneficial consortia promote soil health. Sci. Total Environ. 900, e165801.
https://doi.org/10.1016/j.scitotenv.2023.165801
XUE X, Du S, Jiao F, Xi M, Wang A, Xu H, Jiao Q, Zhang X, Jiang H, Chen J, Wang M. 2021. The regulatory network behind maize seed germination: effects of temperature, water, phytohormones, and nutrients. Crop J. 9:718-724.
https://doi.org/10.1016/j.cj.2020.11.005
ZELAYA-MOLINA LX, Chávez-Díaz IF, Ramos-Garza J, Fajardo-Franco ML, Hernández-Rodríguez C. 2024. Agriculture assisted by microbial genetic resources: current and future scenarios. Curr. Res. Microb. Sci. 6, e100222.
https://doi.org/10.1016/j.crmicr.2024.100222
ZELAYA-MOLINA LX, Hernández-Soto LM, Guerra-Camacho JE, Monterrubio-López R, Patiño-Siciliano A, Villa-Tanaca L, Hernández-Rodríguez C. 2016. Ammonia-oligotrophic and diazotrophic heavy metal-resistant Serratia liquefaciens strains from pioneer plants and mine tailings. Microb. Ecol. 72:324-346. https://doi.org/10.1007/s00248-016-0771-3
ZELAYA-MOLINA LX, Sanchez-Lima AD, Arteaga-Garibay RI, Bustamante-Brito R, Vásquez-Murrieta MS, Martínez-Romero E, Ramos-Garza J. 2021. Functional characterization of culturable fungi from microbiomes of the “conical cobs” mexican maize (Zea mays L.) landrace. Arch. Microbiol. 204, e57. https://doi.org/10.1007/s00203-021-02680-1

Publicado
Edição
Seção

Este trabalho está licensiado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.