Consorcio bacteriano mejora la nodulación y el rendimiento de leguminosas cultivadas en suelos degradados

Autores/as

Palabras clave:

biofertilizantes, degradación del suelo, fijación biológica de nitrógeno, leguminosas

Resumen

Los consorcios microbianos son una alternativa sostenible para mejorar el rendimiento de cultivos en suelos degradados, pero aún existe poca evidencia de su eficacia en leguminosas bajo condiciones tropicales. Este estudio evaluó el efecto de un consorcio bacteriano multiespecífico sobre tres especies de leguminosas cultivadas en un suelo Ferralítico Rojo Lixiviado con degradación física y química moderada. Entre 2022 y 2024, en el Instituto de Investigaciones Fundamentales en Agricultura Tropical “Alejandro de Humboldt”, La Habana, Cuba, se seleccionaron tres cepas compatibles de bacterias promotoras del crecimiento vegetal (Rhizobium pusense, Bacillus thuringiensis y Bacillus velezensis), que se aplicaron como consorcio a dos cultivares de garbanzo (Cicer arietinum), frijol común (Phaseolus vulgaris) y frijol caupí (Vigna unguiculata). Se utilizó un diseño de bloques al azar y un análisis de varianza seguido de la prueba de Duncan (? = 0.05) para comparar cuatro tratamientos: consorcio, consorcio +50% de fertilización mineral, fertilización 100% NPK y testigo absoluto. El consorcio incrementó significativamente el número y la biomasa de nódulos, así como el número y la masa de vainas en los tres cultivos, superando al testigo y al tratamiento fertilizado al 100%, con diferencias significativas entre cultivares. Nacional-29 (garbanzo), Güira-89 (frijol) e INIFAT-94 (caupí) fueron los que mostraron la mejor respuesta. Estos resultados confirman el potencial del consorcio bacteriano de R. pusense R3, B. thuringiensis B3 y B. velezensis B8, como un biofertilizante eficaz para incrementar la productividad de leguminosas en suelos degradados y reducir el uso de fertilizantes químicos en agroecosistemas tropicales.

https://doi.org/10.21929/abanicomicrobiano/2025.2      

e2025-2

https://www.youtube.com/watch?v=chHhtPYuk28

Citas

AHLAWAT PS, Gangaiah B, Zahid A. 2007. Nutrition management in chickpea. En: Yadav SS, Redden RJ, Chen W, Sharma B, Chickpea breeding and management. CAB International. 213-222.

https://www.cabidigitallibrary.org/doi/book/10.1079/9781845932138.000

ALEMNEH AA, Zhou Y, Ryder MH, Denton MD, Denton M, Zhou Y. 2020. Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses. J. Appl. Microbiol. 129:1133-1156. https://doi.org/10.1111/jam.14754

AMEZQUITA-AVILES CF, Coronel-Acosta CB, de los Santos-Villalobos S, Santoyo G, Parra-Cota FI. 2022. Characterization of native plant growth-promoting bacteria (PGPB) and their effect on the development of maize (Zea mays L.). Biotecnia 24:15-22. https://doi.org/10.18633/biotecnia.v24i1.1353

APÁEZ-BARRIOS M, Escalante-Estrada JAS, Apáez-Barrios P, Álvarez-Hernandez JC. 2020. Producción, crecimiento y calidad nutrimental del garbanzo en función del nitrógeno y fósforo. Rev. Mex. Cienc. Agríc. 11(6):1273-1284.

http://doi.org/10.29312/remexca.v11i6.2226

APÁEZ-BARRIOS P, Escalante P, Salvador JA, Sosa E, Rodríguez MT y Apáez-Barrios M. 2014. Fenología, producción y calidad nutrimental del grano de frijol chino en función de la biofertilización y fertilización foliar. Interciencia, 39(12):857-862. https://www.interciencia.net/volumen-39/numero-12-3/

ASAD A, Sikandar A, Mujtaba H, Malik M, Saad M, Ali S, Mukhtaj K. 2022. Detection of deficiency of nutrients in grape leaves using deep network. Math. Probl. Eng. 2022: e3114525. https://doi.org/10.1155/2022/3114525

AZIZOGLU U. 2019. Bacillus thuringiensis as a biofertilizer and biostimulator: a mini-review of the little-known Plant Growth-Promoting Properties of Bt. Curr. Microbiol. 76:1379-1385. https://doi.org/10.1007/s00284-019-01705-9

BAGHERI N, Ahmadzadeh M, Salehi Jouzani G. 2019. Interaction of Bacillus amyloliquefaciens and Azospirillum oryzae on wheat growth promotion and Fusarium graminearum disease inhibition. Crop Biotechnol. 9:19-33.

http://doi.org/10.30473/cb.2019.43198.1757

BAI B, Liu W, Qiu X, Zhang J, Zhang J. Bai Y. 2022. The root microbiome: Community assembly and its contributions to plant fitness. J. Integr. Plant Biol. 64:230-243. http://doi.org/10.1111/jipb.13226

BEYENE BB, Pagano MC, Vaiyapuri PR, Tuji FA. 2022. Microbial consortia inoculation of woody legume Erythrina brucei increases nodulation and shoot nitrogen and phosphorus under greenhouse conditions. Biotechnol. Rep. 33:e00707. https://doi.org/10.1016/j.btre.2022.e00707

BIANCO L. 2020. Principales aspectos de la nodulación y fijación biológica de nitrógeno en Fabáceas. IDESIA. 38(2):21-29. http://dx.doi.org/10.4067/S0718-34292020000200021

CHAUDHARY P, Singh S, Chaudhary A, Sharma A, Kumar G. 2022. Overview of biofertilizers in crop production and stress management for sustainable agriculture. Front. Plant Sci. 13: e930340. https://doi.org/10.3389/fpls.2022.930340

DEVI R, Kaur T, Kour D, Yadav AN. 2022. Microbial consortium of mineral solubilizing and nitrogen fixing bacteria for plant growth promotion of amaranth (Amaranthus hypochondrius L.). Biocatal. Agric. Biotechnol. 43:10240.

https://doi.org/10.1016/j.bcab.2022.102404

ESCOBAR-OÑA WS, Tafur-Recalde V, Pazmiño-Mayorga JA, Vivas-Vivas RJ. 2017. Respuesta del cultivo de frejol caraota (Phaseolus vulgaris L.) a la aplicación foliar complementaria de tres bioestimulantes. Dom. Cien. 3(3):556-571.

https://dominiodelasciencias.com/ojs/index.php/es/article/view/492

ECHEVARRÍA A Wong FJ, Borboa J, Rodríguez F, Del Toro CL, García JL y Rueda-Puente EO. 2021. Fertilization systems in chickpea (Cicer arietinum L.) in soils of arid-desertic areas. Trop. Subtrop. Agroecosyst. 24(2):53.

http://dx.doi.org/10.56369/tsaes.3485

ETESAMI H, Jeong BR, Glick BR. 2021. Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake by plant. Front. Plant Sci. 12: e699618. https://doi.org/10.3389/fpls.2021.699618

FLORES-DUARTE NJ, Pérez-Pérez J, Navarro-Torre S, Mateos-Naranjo E, Redondo-Gómez S, Pajuelo E, Rodríguez-Llorente ID. 2022a. Improved Medicago sativa nodulation under stress assisted by Variovorax sp. endophytes. Plants 11: e1091. https://doi.org/10.3390/plants11081091

FLORES-DUARTE NJ, Caballero-Delgado S, Pajuelo E, Mateos-Naranjo E, Redondo-Gómez S, Navarro-Torre S, Rodríguez-Llorente ID. 2022b. Enhanced legume growth and adaptation to degraded estuarine soils using Pseudomonas sp. nodule endophytes. Front. Microbiol. 13: e1005458. https://doi.org/10.3389/fmicb.2022.1005458

FLORES-DUARTE NJ, Mateos-Naranjo E, Redondo-Gómez S, Pajuelo E, Rodriguez-Llorente ID, Navarro-Torre S. 2022c. Role of nodulation-enhancing rhizobacteria in the promotion of Medicago sativa development in nutrient-poor soils. Plants 11: e1164. https://doi.org/10.3390/plants11091164

GONZÁLEZ-LEYVA M, González-Cruz M, Nápoles-Gallardo E, Baldaquín-Pagan A. 2012. Efectividad de algunos biofertilizantes en el cultivo del garbanzo (Cicer Arietinum L.) en un suelo Fersialítico Pardo Rojizo Mullido. Innov. Tecnol. 18:1-10.

GOPALAKRISHNAN S, Srinivas V, Vemula A, Samineni Sn, Rathore A. 2018. Influence of diazotrophic bacteria on nodulation, nitrogen fixation, growth promotion and yield traits in five cultivars of chickpea. Biocatal. Agric. Biotechnol. 15 35-42.

https://doi.org/10.1016/j.bcab.2018.05.006

HASSEN AI, Lamprecht SC, Bopape FL. 2020. Emergence of ?-rhizobia as new root nodulating bacteria in legumes and current status of the legume-rhizobium host specificity dogma. World J. Microbiol. Biotechnol. 36:40.

https://doi.org/10.1007/s11274-020-2811-x

HERNÁNDEZ A, Morales M, Carnero G, Hernández Y, Terán Z, Grandio D, Bojórnes JI, Vargas D, Bernal A, Terry E, Gonzalez PJ, Cabrera JA Garcia JD. 2020. Nuevos resultados sobre el cambio de las propiedades de los suelos Ferralíticos Rojos Lixiviados de la “LLanura Roja de La Habana”. La Habana, Cuba. Ediciones INCA. Pp 159. ISBN 978-959-7258-04-9.

HUANG H, Zhao Y, Fan L, Jin Q, Yang G, Xu Z. 2020. Improvement of manganese phytoremediation by Broussonetia papyrifera with two plant growth promoting (PGP) Bacillus species. Chemosphere 260: e127614.

https://doi.org/10.1016/j.chemosphere.2020.127614

KHAN N, Martínez-Hidalgo P, Ice TA, Maymon M, Humm EH, Nejat N, Sanders ER, Kaplan D, Hirsch AM. 2018. Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Front. Microbiol. 9: e2363. https://doi.org/10.3389/fmicb.2018.02363

LINDSTRÖM K, Mousavi SA. 2020. Effectiveness of nitrogen fixation in rhizobia. Microb. Biotechnol.13(5):1314-1335. https://doi.org/10.1111/1751-7915.13517

MORENO-GALVÁN A, Romero-Perdomo FA, Estrada-Bonilla G, Gadelha-Meneses CHS, Bonilla RR. 2020. Dry-Caribbean Bacillus spp. strains ameliorate drought stress in maize by a strainspecific antoxidant response modulation. Microorganisms 8(6):823. https://doi.org/10.3390/microorganisms8060823

NC 51. 1999. Determinación del por ciento de material orgánica. Comité Técnico de Normalización. No. 3. Calidad del suelo. Análisis químico, La Habana: Oficina Nacional de Normalización.

NC 52. 1999. Determinación de las formas móviles de fósforo y potasio. Comité Técnico de Normalización. No. 3. Calidad del suelo. Análisis químico, La Habana: Oficina Nacional de Normalización.

NC 65 .2000. Determinación de la capacidad de intercambio catiónico y de los cationes intercambiables del suelo. Comité de Normalización. No. 3. Calidad del suelo. Análisis químico, La Habana: Oficina Nacional de Normalización.

NC ISO 10390. 1999. Determinación de Ph. Comité Técnico de Normalización. No. 3. Calidad del suelo. Análisis químico, La Habana: Oficina Nacional de Normalización.

ORTEGA-GARCÍA M, Ríos-Rocafull Y, Zelaya-Molina L, Lara-Aguilera J, Arteaga-Garibay R, Nápoles-García MC (2024a). Rhizobium pusense asociado al garbanzo (Cicer arietinum L.) en Cuba. Agron. Mesoam. 35: e55876.

https://doi.org/10.15517/am.2024.55876

ORTEGA-GARCÍA M, Ríos-Rocafull Y, Zelaya-Molina LX, Ruíz-Ramírez S, Zaldívar-Lopez HA, Chavez-Díaz IF. 2024b. Bioprospecting a mountain-derived phosphorus-solubilizing bacterium: Bacillus thuringiensis B3 as a plant-growth promoter in lettuce and tomato horticultural crops Sci. Hortic. 337: e113568.

https://doi.org/10.1016/j.scienta.2024.113568

PANEQUE-PÉREZ VM. 2010. Manual de técnicas analíticas para análisis de suelo, foliar, abonos orgánicos y fertilizantes químicos. La Habana, Cuba. Ediciones INCA. Pp. 160. ISBN: 978-959-7023-51-7.

https://ediciones.inca.edu.cu/files/folletos/folleto_suelos.pdf

RAMAKRISHNAN P, Rangasamy A, Manikandan A, Raghu R, Ramasamy K, SenthilKumar M, Subramanium T, Saminathan V. 2024. Rhizobial and passenger endophytes alleviates moisture stress in groundnut (Arachis hypogaea). Plant Stress. 14: e100590. https://doi.org/10.1016/j.stress.2024.100590

REDONDO-GÓMEZ S, Romano-Rodríguez E, Mesa-Marín J, Sola-Elías C, Mateos-Naranjo E. 2022. Consortia of plant-growth-promoting rhizobacteria isolated from halophytes improve the response of swiss chard to soil salinization. Agronomy 12:468. https://doi.org/10.3390/agronomy11081609

RÍOS-ROCAFULL Y, Ortega-García M, Rojas-Badia M, Lugo-Hernández D, Fey-Govin L, Cañizares-Hernández K, Dibut-Álvarez B. 2011. Caracterización de cepas bacterianas con potencial para la elaboración de biofertilizantes. Agrotec. Cuba 24(1):9-12. https://agrotecnia.edicionescervantes.com/index.php/agrotecnia/article/view/457

ROSABAL L, Macías P, Maza M, López R, Guevara F. 2021. Microorganismos del suelo y sus usos potenciales en la agricultura frente al escenario del cambio climático. Magna Scientia Uceva 1:104-117. https://doi.org/10.54502/msuceva.v1n1a14

SALEEM M, Nawaz F, Hussain MB, Ikram RM. 2021. Comparative effects of individual and consortia plant growth promoting bacteria on physiological and enzymatic mechanisms to confer drought tolerance in maize (Zea mays L.). J. Soil. Sci. Plant. Nutr. 21:3461-3476. https://doi.org/10.1007/s42729-021-00620-y

SARAN A, Imperato V, Fernandez L, Gkorezis P, d’Haen J, Merini LJ, Vangronsveld J, Thijs S. 2020. Phytostabilization of polluted military soil supported by bioaugmentation with PGP-trace element tolerant bacteria isolated from Helianthus petiolaris. Agronomy 10:204. http://doi.org/10.3390/agronomy10020204

SPOLAOR LT, Gonçalves SA, Santos O, Martínez-Oliveira AL, Scapim CA, Bengosi-Bertagna FA, Kuki MC. 2016. Plant growth-promoting bacteria associated with nitrogen fertilization at topdressing in popcorn agronomic performance. Bragantia 75(1):33-40. https://www.scielo.br/j/brag/i/2016.v75n1/

TAMAYO Y, Juaréz P, Capdevila W, Lescaille J, Terry E. 2020. Bioproductos en el crecimiento y rendimiento de Phaseolus vulgaris L. var. Delicia 364. Terra Latinoam. 38(3):667-678. http://dx.doi.org/10.28940/terra.v38i3.672

TEWARI S, Sharma S. 2020. Rhizobial exopolysaccharides as supplement for enhancing nodulation and growth attributes of Cajanus cajan under multi-stress conditions: A study from lab to field. Soil Tillage Res. 198: e104545.

https://doi.org/10.1016/j.still.2019.104545

TIMOFEEVA A, Galyamova M, Sedykh S. 2022. Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture. Plants 11: e2119. https://doi.org/10.3390/plants11162119

VAHIDINASAB M, Ahmadzadeh M, Henkel M, Hausmann R, Heravi KM. 2019. Bacillus velezensis UTB96 is an antifungal soil isolate with a reduced genome size compared to that of Bacillus velezensis FZB42. Microbiol. Resour. Announc. 8: e00667-19. https://doi.org/10.1128/mra.00667-19

VISHWAKARMA K, Kumar N, Shandilya C, Mohapatra S, Bhayana S, Varma A. 2020. Revisiting plant–microbe interactions and microbial consortia application for enhancing sustainable agriculture: a review. Front. Microbiol. 11: e560406.

https://doi.org/10.3389/fmicb.2020.560406

WANG Q, Liu J, Zhu H. 2018. Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Front. Plant Sci. 9: e313.

http://dx.doi.org/10.3389/fpls.2018.00313

ZHANG C, Cai K, Li M, Zheng J, Han Y. 2022. Plant-growth-promoting potential of PGPE isolated from Dactylis glomerata L. Microorganisms 10: e731.

https://doi.org/10.3390/microorganisms10040731

ZHU Q, Wang B, Tan J, Liu T, Li L, Liu YG. 2020. Plant synthetic metabolic engineering for enhancing crop nutritional quality. Plant Commun. 1: e100017.

https://doi.org/10.1016/j.xplc.2019.100017

Publicado

2025-08-20

Número

Sección

Artículos Originales