Manipulación de la fermentación ruminal mediante electrofermentación

Keywords:

rumen fermentation, electrofermentation, rumen microbiota

Abstract

Rumen fermentation (RF) is an anaerobic redox process carried out by a complex microbial community that generates volatile fatty acids (VFAs), the primary energy source for ruminants. However, RF also produces methane, a greenhouse gas that negatively impacts the sustainability of livestock systems. This has intensified interest in strategies aimed at improving rumen energy efficiency by increasing VFA production while simultaneously reducing methane emissions per unit of fermented feed. Electrofermentation (EF) has emerged as an innovative alternative to address these limitations. This approach integrates microbial fermentation with the application of electrical currents through electrodes that act as electron sinks or sources. By modifying the microbial redox balance and overcoming thermodynamic constraints, EF redirects electron flow toward metabolic pathways that enhance VFA synthesis. In vitro studies have reported increases of over 80% in VFA production, accompanied by significant reductions in biogas generation and increased microbial biomass. Collectively, these findings position EF as a promising strategy to improve feed efficiency and reduce the environmental impact of livestock production, although its in vivo implementation still requires further technical and methodological research.

https://doi.org/10.21929/abanicomicrobiano/2025.7   

2025-7

https://www.youtube.com/watch?v=cAZisEK0sF8

 

 

References

AGUILAR-GONZÁLEZ M, Buitrón G, Shimada A, Ayala-Sumuano J, González-Dávalos L, Varela-Echavarría A, Mora O. 2022. Study on manipulation of ruminal fermentation using a bioelectrochemical system. J. Anim. Physiol. and Anim. Nutr. 107(2):357-366. https://doi.org/10.1111/jpn.13723

BAJRACHARYA S, Sarkar O, Krige A, Matsakas L, Rova U, Christakopoulos P. 2022. Chapter 12: Advances in gas fermentation processes. In: Current Developments in Biotechnology and Bioingineering, Eds Sirohi et al. Elsevier. Pp. 321-351. https://doi.org/10.1016/B978-0-323-91167-2.00004-6

BHAGCHANDANII DD, Babu RP, Sonawane JM, Khanna N, Pandit S, Jadhav DA, Prasad R. 2020. A comprehensive understanding of electro-fermentation. Fermentation. 6(3):e92. https://doi.org/10.3390/fermentation6030092

BUCKEL W. 2021. Energy conservation in fermentations of anaerobic bacteria. Front. Microbiol. 12(703525):1-16. https://doi.org/10.3389/fmicb.2021.703525

CHANDRASEKHAR K, Naresh K.A, Gopalakrishnan K., Dong-Hoon K., Young-Chae S., Sang-Hyoun K. 2021. Electro-fermentation for biofuels and biochemicals production: current status and future directions. Bioresour. Technol. 323:e124598 https://doi.org/10.1016/j.biortech.2020.124598

CHOI O, Sang BI. 2016. Extracellular electron transfer from cathode to microbes: application for biofuel production. Biotechnol. Biofuels. 9(11):1-14. https://doi.org/10.1186/s13068-016-0426-0

FIRKINS JL, Mitchell KE. 2023. Rumen modifiers in today's dairy rations. J. Dairy Sci. 106(5):3053-3071. https://doi.org/10.3168/jds.2022-22644

GONZÁLEZ-CABALEIRO R, Lema JM, Rodríguez J. 2015. Metabolic energy-based modelling explains product yielding in anaerobic mixed culture fermentations. PLoS One. 10(5):e0126739. https://doi.org/10.1371/journal.pone.0126739

KRACKE F, Vassilev I, Krömer JO. 2015. Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems. Front. Microbiol. 6:e575. https://doi.org/10.3389/fmicb.2015.00575

KRÓLICZEWSKA B, Pecka-Kie?b E, Bujok J. 2023. Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and Issues. Agriculture. 13(3):e602. Pags.1-26. https://doi.org/10.3390/agriculture13030602

LAN W, Yang C. 2019. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 654:1270-1283. https://doi.org/10.1016/j.scitotenv.2018.11.180

LEAHY SC, Janssen PH, Attwood GT, Mackie RI, McAllister TA, Kelly WJ. 2022. Electron flow: key to mitigating ruminant methanogenesis. Trends Microbiol. 30(3):209-212. https://doi.org/10.1016/j.tim.2021.12.005

LIU K, Zhang Y, Yu Z, Xu Q, Zheng N, Zhao S, Huang G, Wang J. 2021. Ruminal microbiota–host interaction and its effect on nutrient metabolism. Anim. Nutr. 7(1):49-55. https://doi.org/10.1016/j.aninu.2020.12.001

LÓPEZ-HERNÁNDEZ R, Cercado-Quezada B, Gómez-Velázquez H, Robles-Rodríguez C, González-Dávalos L, Varela-Echavarría A, Shimada A, Mora O. 2023. Single-chamber electrofermentation of rumen fluid increases microbial biomass and volatile fatty acid production without major changes in diversity. Fermentation. 9(6):e502. https://doi.org/10.3390/fermentation9060502

MORAÏS S, Mizrahi I. 2019. The road not taken: the rumen microbiome, functional groups, and community states. Trends Microbiol. 27(6):538-549.

https://doi.org/10.1016/j.tim.2018.12.011

MOSCOVIZ R, Toledo-Alarcón J, Trably E, Bernet N. 2016. Electro-fermentation: how to drive fermentation using electrochemical systems. Trends Biotechnol. 34(11):856-865. https://doi.org/10.1016/j.tibtech.2016.04.009

MUKHERJEE T, Venkata Mohan S. 2021. Metabolic flux of Bacillus subtilis under poised potential in electrofermentation system: gene expression vs product formation. Bioresour. Technol. 342:e125854. https://doi.org/10.1016/j.biortech.2021.125854

NAGARAJA TG. 2016. Microbiology of the Rumen. In: Rumenology. Eds. MILLEN DD et la. Springer International. Pp 39-61. https://doi.org/10.1007/978-3-319-30533-2_2

NEWBOLD C, Ramos-Morales E. 2020. Review: Ruminal microbiome and microbial metabolome: Effects of diet and ruminant host. Anim. 14(1):78-86. https://doi.org/10.1017/S1751731119003252

ROMAGNOLI EM, Kmit MCP, Chiaramonte JB, Rossmann M, Mendes R. 2017. Ecological aspects on rumen microbiome. In: Diversity and Benefits of Microorganisms from the Tropics. Eds. DE AZEVEDO JL and Quecine MA. Springer. Pp. 367-389. https://doi.org/10.1007/978-3-319-55804-2_16

SANJORJO RA, Tseten T, Kang MK, Kwon M, Kim SW. 2023. In pursuit of understanding the rumen microbiome. Fermentation. 9(2):e114.

https://doi.org/10.3390/fermentation9020114

SCHIEVANO A, Pepé-Sciarra T, Vanbroekhoven K, De Wever H, Puig S, Andersen SJ, Rabaey K, Pant D. 2016. Electro-fermentation- Mergin electrochemistry with fermentation industrial applications. Trends in Biotechnol. 34(11):866-878.

https://doi.org/10.1016/j.tibtech.2016.04.007

SESHADRI R, Leahy SC, Attwood GT, Teh KH, Lambie SC, Cookson AL, Eloe-Fadrosh EA, Pavlopoulos GA, Hajithomas M, Varghese NJ, Paez-Espino D, Hungate 1000 project collaborators, Perry R, Henderson G, Creevey CJ, Terrapon N, Lapebie P, Drula E, Lombard V, Rubin E, Kyrpides NC, Henrissat B, Woyke T, Ivanova NN, Kelly WJ. 2018. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat. Biotechnol. 36:359-367. https://doi.org/10.1038/nbt.4110

SIKORA A, Detman A, Chojnacka A, B?aszczyk MK. 2017. Anaerobic digestion: I. A common process ensuring energy flow and the circulation of matter in ecosystems. II. A tool for the production of gaseous biofuels. InTech. 14(08):e271. https://doi.org/10.5772/64645

SRAVAN JS, Butti SK, Sarkar O, Mohan SV. 2019. Chapter 5.1: Electrofermentation: chemicals and fuels. In: Microbial Electrochemical Technology. Eds. MOHAN VS, et al. Elsevier. Pp 723-737. https://doi.org/10.1016/B978-0-444-64052-9.00029-7

VASSILEV I, Averesch Nils JH, Ledezma P, Kokko M. 2021. Anodic electro-fermentation: Empowering anaerobic production processes via anodic respiration. Biotechnol. Adv. 48:e107728. https://doi.org/10.1016/j.biotechadv.2021.107728

YEE MO, Deutzmann J, Spormann A, Rotaru AE. 2020. Cultivating electroactive microbes–from field to bench. Nanotechnol. 31:e174003. https://doi.org/10.1088/1361-6528/ab6ab5

Published

2025-12-06

Issue

Section

Revisiones de Literatura