Effect of the administration of eCG and GnRH-analogue on the reproductive performance of primiparous sows weaned under high caloric load conditions
Keywords:
eCG, GnRH, reproductive performance, heat stress, giltsAbstract
With the objective of determining the effect of the application of eCG and GnRH-analogue on the reproductive performance of primiparous sows that were lactating under conditions of high environmental caloric load, a study was carried out during the months of June to October. The average ambient temperature during the study period was 30.9 °C and a relative humidity of 74.6 % (ITH of 83.4 points). One hundred primiparous sows were used, which were assigned one of two treatments (T): T1 (Control group; n = 50); sows that did not receive post-weaning and T2 hormonal treatment (eCG + GnRH; n = 50); sows that received i.m. of 1000 IU of eCG 24 h post-weaning and 50 µg of GnRH at the time of the onset of heat. Sows that received the application of 1000 IU of eCG had a shorter (p<0.05) weaning-to-estrus interval (129.41 vs. 218.54 h); However, the farrowing rate was lower (p<0.05) in the sows that received the combined treatment of 1000 IU of eCG 24 h post-weaning and 50 µg of GnRH at the time of estrus (66.66 vs. 81.25%). The size and weight of the litter was not modified (p>0.05) by the treatment. The results obtained allow us to conclude that the i.m. application of 1000 IU eCG 24 h post-weaning, to gilts weaned under conditions of high caloric load, decreases the weaning-to-estrus interval, but the combined administration of 1000 IU of eCG 24 h post-weaning and 50 µg of GnRH at the time of the manifestation of estrus decreases farrowing rate in metabolically compromised primiparous sows under conditions of high environmental caloric load.
References
AHERNE FX, Kirkwood RN. 1985. Nutrition and sow prolificacy. Journal of Reproduction and Fertility. (Suppl. 33):169-183.
https://www.researchgate.net/publication/19250763_Nutrition_and_sow_prolificacy
AUVIGNE V, Leneveu P, Jehannin C, Peltoniemi O, Salle E. 2010. Seasonal infertility in sows: a five-year field study to analyze the relative roles of heat stress and photoperiod. Theriogenology. 74:60-66. https://doi.org/10.1016/j.theriogenology.2009.12.019
BAIDOO SK, Aherne FX, Kirkwood RN, Foxcroft GR. 1992. Effect of feed intake during lactation and after weaning on sow reproductive performance. Canadian Journal of Animal Science. 72(4):911-917. https://doi.org/10.4141/cjas92-103
BAKER JE. 2004. Effective environmental temperature. Journal of Swine Health and Production. 12:140-143.
BERTOLDO MJ, Holyoake PK, Evans G, Grupen CG. 2011. Seasonal effects on oocyte developmental competence in sows experiencing pregnancy loss. Animal Reproduction Science. 124:104–111. https://doi.org/10.1016/j.anireprosci.2011.02.012
BLOEMHOF S, Mathur PK, Knol EF, van der Waaij EH. 2013. Effect of daily environmental temperature on farrowing rate and total born in dam line sows. Journal of Animal Science. 91:2667-2679. https://doi.org/10.2527/jas.2012-5902
BRÜSSOW K P, Schneider F, Kanitz W, Rátky J, Kauffold J, Wähner M. 2009. Studies on fixed-time ovulation induction in the pig. Society of Reproduction and Fertility supplement. 66:187–195. https://pubmed.ncbi.nlm.nih.gov/19848281/
BRÜSSOW KP, Jöchle W, Hühn U. 1996. Control of ovulation with a GnRH analog in gilts and sows. Theriogenology. 46:925–934. https://doi.org/10.1016/S0093-691X(96)00258-0
CLARKE H, Dhillo WS, Jayasena CN. 2015. Comprehensive review on kisspeptin and its role in reproductive disorders. Endocrinology and Metabolism. 30:124-141. https://doi.org/10.3803/EnM.2015.30.2.124
COSTERMANS N, Teerds KJ, Middelkoop A, Roelen B, Schoevers EJ, van Tol H, Laurenssen B, Koopmanschap RE, Zhao Y, Blokland M, van Tricht F, Zak L, Keijer J, Kemp B, Soede NM. 2019. Consequences of negative energy balance on follicular development and oocyte quality in primiparous sows. Biology of Reproduction. 102(2):388–398. https://doi.org/10.1093/biolre/ioz175
COSTERMANS NGJ, Teerds KJ, Middelkoop U, Roelen BAJ, Schoevers EJ, van Tol HTA, Laurenssen B, Koopmanschap RE, Zhao Y, Blokland M, van Tricht F, Zak L, Keijer J, Kemp B, Soede NM. 2020. Consequences of negative energy balance on follicular development and oocyte quality in primiparous sows. Biology of Reproduction. 102(2): 388–398. https://doi.org/10.1093/biolre/ioz175
DE JONG E, Kauffold J, Engl S, Jourquin J, Maes D. 2013. Effect of a GnRH analogue (Maprelin) on the reproductive performance of gilts and sows. Theriogenology. 80:870–7. https://doi.org/10.1016/j.theriogenology.2013.07.012
DE RENSIS F, Gherpelli M, Superchi P, Martelli P, Kirkwood RN. 2005. Relationship between backfat depth and plasma leptin during lactation and sow reproductive performance after weaning. Animal Reproduction Science. 90:95-100. https://doi.org/10.1016/j.anireprosci.2005.01.017
DE RENSIS F, Ziecik AJ, Kirkwood RN. 2017. Seasonal infertility in gilts and sows: Aetiology, clinical implications, and treatments. Theriogenology. 96:111-117.
https://doi.org/10.1016/j.theriogenology.2017.04.004
DRIANCOURT MA, Locatelli A, Prunier A. 1995. Effects of gonadotrophin deprivation on follicular growth in gilts. Reproduction Nutrition Development. 35(6):663-73.
https://doi.org/10.1051/rnd:19950606
FARMER SW, Papkoff H. 1979. Immunochemical studies with pregnant mare serum gonadotropin. Biology of Reproduction. 21:425–31.
https://doi.org/10.1095/biolreprod21.2.425
GARCÍA E. 2004. Modificaciones al Sistema de Clasificación Climática de Köppen. 3ª ed. México D.F. Pp. 91. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/book/83
GOURDINE JL, Bidanel JP, Noblet J, Renaudeau D. 2006. Effects of breed and season on performance of lactating sows in a tropical humid climate. Journal of Animal Science. 84(2):360–369. https://doi.org/10.2527/2006.842360x
GOURDINE JL, Renaudeau D, Noblet J, Bidanel JP. 2004. Effects of season and parity on performance of lactating sows in a tropical climate. Animal Science. 79:273–282. https://doi.org/10.1017/S1357729800090135
GUTHRIE HD, Bolt DJ, Cooper BS. 1990. Effects of gonadotropin treatment on ovarian follicle growth and granulosa cell aromatase activity in prepuberal gilts. Journal of Animal Science. 68:3719-3726. https://doi.org/10.2527/1990.68113719x
HAN T, Björkman S, Soede NM, Oliviero C, Peltoniemi OAT. 2020. IGF-1 concentration patterns and their relationship with follicle development after weaning in young sows fed different pre-mating diets. Animal. 1–9. https://doi.org/10.1017/S1751731120000063
HU P, Yang H, Lv B, Zhao D, Wang J, Zhu W. 2019. Dynamic changes of fatty acids and minerals in sow milk during lactation. Journal of Animal Physiology and Animal Nutrition. 103:603–611.https://doi.org/10.1111/jpn.13040
LUCY MC. 2008. Functional differences in the growth hormone and insulin-like growth factor axis in cattle and pigs: Implications for post-partum nutrition and reproduction. Reproduction in Domestic Animals. 43 (Suppl. 2):31–39. https://doi.org/10.1111/j.1439-0531.2008.01140.x
HULTÉN F, Valros A, Rundgren M, Einarsson S. 2002. Reproductive endocrinology and postweaning performance in the multiparous sow. Part 1. Influence of metabolic status during lactation. Theriogenology. 58:1503–1517. https://doi.org/10.1016/s0093-691x(02)01059-2
INEGI. 2009. Anuario Estadístico del Estado de Sinaloa. Instituto Nacional de Estadística, Geografía e Informática. Aguascalientes, Aguascalientes, México.
https://estadisticas.sinaloa.gob.mx/documentos/AnuarioEstad%C3%ADsticoSinaloa2009.pdf
JOHNSTON LJ, Ellis M, Libal GW, Mayrose VB, Weldon WC, and NCR-89 Committee on Swine Management. 1999. Effect of room temperature and dietary amino acid concentration on performance of lactating sows. Journal of Animal Science. 77:1638–1644. https://doi.org/10.2527/1999.7771638x
KIRKWOOD RN, Baidoo SK, Aherne FX. 1990. The influence of feeding level during lactation and gestation on the endocrine status and reproductive performance of second parity sows. Canadian Journal of Animal Science. 70:1119-1126.
https://doi.org/10.4141/cjas90-135
KIRKWOOD RN, Kauffold J. 2015. Advances in breeding management and use of ovulation induction for fixed-time AI. Reproduction in Domestic Animals. 50:85–89. https://doi.org/10.1111/rda.12524
KOKETSU Y, Dial GD, Pettigrew JE, Xue J, Yang H, Lucia T. 1998. Influence of lactation length and feed intake on reproductive performance and blood concentrations of glucose, insulin and luteinizing hormone in primiparous sows. Animal Reproduction Science. 52:153–163. https://doi.org/10.1016/S0378-4320(98)00093-1
LOPES TP, Padilla L, Bolarin A, Rodriguez-Martinez H, Roca J. 2020. Ovarian Follicle Growth during Lactation Determines the Reproductive Performance of Weaned Sows. Animals. 10:1012; https://doi.org/10.3390/ani10061012
LOPES TP, Sanchez-Osorio J, Bolarin A, Martinez EA, Roca J. 2013. Relevance of ovarian follicular development to the seasonal impairment of fertility in weaned sows. The Veterinary Journal. 199:382-386. https://doi.org/10.1016/j.tvjl.2013.11.026
LOPES TP, Sanchez-Osorio J, Bolarin A, Martinez EA, Roca J. 2014. Relevance of ovarian follicular development to the seasonal impairment of fertility in weaned sows. The Veterinary Journal. 199:382–386. https://doi.org/10.1016/j.tvjl.2013.11.026
LUCY MC, J Liu, K Boyd, CJ Bracken. 2001. Ovarian follicular growth in sows. Reproduction. 58 (Suppl.):31–45.
https://www.biosciproceedings.org/bp/0016/pdf/bp0016cpr3.pdf
MADER TL, Davis MS, Brown-Brandl T. 2006. Environmental factors influencing heat stress in feedlot cattle. Journal of Animal Science. 84:712-719. ISSN: 0021-8812; http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1622&context=animalscifacpub
OMTVEDT IT, Nelson RE, Edwards RL, Stephens DF, Turman EJ. 1971. Influence of heat stress during early, mid and late pregnancy of gilts. Journal of Animal Science. 32:312-317. https://doi.org/10.2527/jas1971.322312x
PEARODWONG P, Tretipskul C, Nicoline M. Soede NM, Tummaruk P. 2019. Factors affecting estrus and ovulation time in weaned sows with induced ovulation by GnRH administration in different seasons. The Journal of Veterinary Medical Science. 81(11):1567–1574. https://doi.org/10.1292/jvms.18-0429
PEARODWONG P, Tretipskul C, Panyathong R, Tummaruk P. 2020. Factors influencing pre-ovulatory follicle diameter and weaning-to-ovulation interval in spontaneously ovulating sows in tropical environment. Reproduction in Domestic Animals. 55:1756–1763. https://doi.org/10.1111/rda.13836
PELTONIEMI OA, Heinonen M, Leppävuori A, Love RJ. 1999. Seasonal effects on reproduction in the domestic sow in Finlandia herd record study. Acta Veterinaria Scandinavica. 40:133-144.
PELTONIEMI OA, Love RJ, Klupiec C, Evans G. 1997. Effect of feed restriction and season on LH and prolactin secretion, adrenal response, insulin and FFA in group housed pregnant gilts. Animal Reproduction Science. 49:179-190.
https://doi.org/10.1016/S03784320(97)00062-6
PELTONIEMI OA, Virolainen JV. 2006. Seasonality of reproduction in gilts and sows. Society for Reproduction and Fertility.; (Suppl. 62):205-218.
https://pubmed.ncbi.nlm.nih.gov/16866319/
REVEL FG, Ansel L, Klosen P, Saboureau M, Pevet P, Mikkelsen JD, Simonneaux V. 2007. Kisspeptin: a key link to seasonal breeding. Reviewes in Endocrine and Metabolic Disorders. 8:57- 65. https://doi.org/10.1007/s11154-007-9031-7
SÁ FMF, Crespilho AM, Santos JEP, Perry GA, Baruselli PS. 2010. Ovarian follicle diameter at timed insemination and estrous response influence likelihood of ovulation and pregnancy after estrous synchronization with progesterone or progestin-based protocols in suckled Bos indicus cows. Animal Reproduction Science. 120:23–30.
https://doi.org/10.1016/j.anireprosci.2010.03.007
SCHLEGEL W, Krebs R, Stenzel S, Wähner M. 1978. Effect of various injection times in ovulation stimulation in gilts following previous biotechnical puberty induction. Arch Exp Veterinarmed. 32(6):863-867. https://pubmed.ncbi.nlm.nih.gov/571265/
SMITH JT, Acohido BV, Clifton DK, Steiner RA. 2006. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. Journal of Neuroendocrinology. 18:298-303.
https://doi.org/10.1111/j.1365-2826.2006.01417.x
SOEDE NM, Langendijk P, Kemp B. 2011. Reproductive cycles in pigs. Animal Reproduction Science. 124:251–258. https://doi.org/10.1016/j.anireprosci.2011.02.025
STERNING M, Rydhmer L, Eliasson L, Einarsson S, Anderson K. A. 1990. Study on primiparous sows of the ability to show standing oestrus and to ovulate after weaning. Influences of loss of body weight and back fat during lactation and of litter size, litter weight gain and season. Acta Veterinaria Scandinavica. 31:227-236.
TAST A, Peltoniemi OA, Virolainen JV, Love RJ. 2002. Early disruption of pregnancy as a manifestation of seasonal infertility in pigs. Animal Reproduction Science. 74:75-86. https://doi.org/10.1016/S0378-4320(02)00167-7
WEGNER K, Lambertz C, Das G, Reiner G, Gauly M. 2016. Effects of temperature and temperature-humidity index on the reproductive performance of sows during summer months under a temperate climate. Animal Science Journal. 87: 1334-1339. https://doi.org/10.1111/asj.12569
XU Y, Thacker PA, Kirkwood RN, Rajkumar K. 1995. Effects of metabolic hormones and growth factors on forskolin and dibutyryl adenosine 30,50-cyclic monophosphate induced steroidogenic responses by porcine granulosa cells in vitro. Canadian Journal of Animal Science. 75:85-91. https://cdnsciencepub.com/doi/pdf/10.4141/cjas95-011
ZHOU D, Zhuo Y, Che L, Lin Y, Fang Z, Wu D. 2014. Nutrient restriction induces failure of reproductive function and molecular changes in hypothalamus-pituitary-gonadal axis in postpubertal gilts. Molecular Biology Reports. 41:4733-4742.