Desarrollo de una PCR en tiempo real multiplex para la detección de BoHV-1 y BVDV en semen bovino criopreservado
Palabras clave:
inseminación artificial, TaqMan, bioseguridadResumen
En México, la inseminación artificial es una de las principales biotecnologías reproductivas en la ganadería bovina, empleada para incrementar la productividad y el mejoramiento genético del hato. No obstante, gran parte del semen utilizado se procesa a nivel de campo sin un control sanitario estricto, lo que incrementa el riesgo de diseminación de agentes infecciosos como el virus de la diarrea viral bovina (BVDV) y el herpesvirus bovino tipo 1 (BoHV-1). Para fortalecer la detección de estos patógenos, se desarrolló una PCR en tiempo real multiplex con sondas TaqMan, capaz de identificar simultáneamente ambos virus en semen bovino criopreservado. Se emplearon controles positivos consistentes en virus de referencia replicados en células MDBK y, como controles negativos, sobrenadantes de células no infectadas y semen libre de los virus. Los cebadores y sondas se diseñaron a partir de secuencias depositadas en GenBank: el gen E2 para BVDV y la glicoproteína gB para BoHV-1; adicionalmente, se utilizó el gen de ?-actina de Bos taurus como constitutivo. Los ensayos demostraron amplificación específica en pruebas de punto final y resultados satisfactorios en tiempo real. Los hallazgos obtenidos permiten establecer una prueba diagnóstica multiplex que contribuirá a la bioseguridad en programas de inseminación artificial, con la finalidad de minimizar el riesgo de transmisión de BVDV y BoHV-1 a través del semen.
https://doi.org/10.21929/abanicomicrobiano/2025.6
2025-6
https://www.youtube.com/watch?v=FmFfdKDZACY
Citas
ABAD-ZAVALETA J, Ríos-Utrera A, Rosete-Fernández JV, García-Camacho A, Zárate-Martínez JP. 2016. Prevalencia de rinotraqueítis infecciosa bovina y diarrea viral bovina en hembras en tres épocas del año en la Zona Centro de Veracruz. No. Scien. 8(16):213-227. https://novascientia.lasallebajio.edu.mx/ojs/index.php/novascientia/issue/view/16
AL-KUBATI AAG, Hussen J, Kandeel M, Al-Mubarak AIA, Hemida MG. 2021. Recent advances on the bovine viral diarrhea virus molecular pathogenesis, immune response, and vaccines development. Front. Vet. Sci. 8:e665128.
https://doi.org/10.3389/fvets.2021.665128
BACHOFEN C, Braun U, Hilbe M, Ehrensperger F, Stalder H, Peterhans E. 2010. Clinical appearance and pathology of cattle persistently infected with bovine viral diarrhoea virus of different genetic subgroups. Vet. Microbiol. 141:258-267.
https://doi.org/10.1016/j.vetmic.2009.09.022
BETTINI A, Stella M, Precazzini F, Degasperi M, Colorio S, Tavella A. 2023. Infectious bovine rhinotracheitis post-eradication program in the autonomous province of Bolzano, Italy: a retrospective study on potential bovine herpesvirus type 2 Cross-Reactivity. Animals. 13(22):e3502. https://doi.org/10.3390/ani13223502
CHASE CCL, Fulton RW, O'Toole D, Gillette B, Daly RF, Perry G, Clement T. 2017. Bovine herpesvirus 1 modified live virus vaccines for cattle reproduction: Balancing protection with undesired effects. Vet. Microbiol. 206:69-77.
https://doi.org/10.1016/j.vetmic.2017.03.016
CHATTERJEE A, Bakshi S, Sarkar SN, Mitra J, Chowdhury S. 2016. Bovine herpes virus-1 and its infection in India-a review. Indian J. Anim. Health. 55(1):21-40.
https://www.ijah.in/archive_article/50
CHOTHE SK, Sebastian A, Thomas A, Nissly RH, Wolfgang D, Byukusenge M, Mor SK, Goyal SM, Albert I, Tewari D, Jayarao BM, Kuchipudi SV. 2018. Whole-genome sequence analysis reveals unique SNP profiles to distinguish vaccine and wild-type strains of bovine herpesvirus-1 (BoHV-1). Virology. 522:27-36.
https://doi.org/10.1016/j.virol.2018.06.015
COLITTI B, Nogarol C, Giacobini M, Capucchio MT, Biasato I, Rosati S, Bertolotti L. 2019. Compartmentalized evolution of bovine viral diarrhoea virus type 2 in an immunotolerant persistently infected cow. Sci Rep.9:e15460.
https://doi.org/10.1038/s41598-019-52023-w
D’OFFAY JM, Eberle R, Fulton RW, Kirkland PD. 2016. Complete genomic sequence and comparative analysis of four genital and respiratory isolates of bovine herpesvirus subtype 1.2b (BoHV-1.2b), including the prototype virus strain K22. Arch. Virol. 161:3269-74. https://doi.org/10.1007/s00705-016-3026-1
EL-MOHAMADY RS, Behour TS, Rawash ZM. 2020. Concurrent detection of bovine viral diarrhoea virus and bovine herpesvirus-1 in bulls' semen and their effect on semen quality. Int. J. Vet. Sci. Med. 8(1):106-114.
https://doi.org/10.1080/23144599.2020.1850197
GREEN M, and Sambrook J. 2012. Molecular Cloning: A Laboratory Manual. 4th Edition, Vol. II, Cold Spring Harbor Laboratory Press. New York. ISBN: 978-1-936113-42-2.
GRÜNBERG W. 2021. Bovine viral diarrhea and mucosal disease complex. MSD Manual Veterinary Manual, Germany. https://www.msdvetmanual.com/infectious-diseases/bovine-viral-diarrhea/bovine-viral-diarrhea-and-mucosal-disease-complex
GUTIÉRREZ-HERNÁNDEZ J, Palomares-Resendiz G, Hernández-Badillo E, Leyva-Corona J, Díaz-Aparicio E, Herrera-López E. 2020. Frecuencia de enfermedades de impacto reproductivo en bovinos de doble propósito ubicados en Oaxaca, México. Abanico Vet. 10:e114. https://doi.org/10.21929/abavet2020.22
HOU P, Wang H, Zhao G, He C, He H. 2017. Rapid detection of infectious bovine Rhinotracheitis virus using recombinase polymerase amplification assays. BMC Vet. Res. 13:e386. https://doi.org/10.1186/s12917-017-1284-0
ISCARO C, Cambiotti V, Petrini S, Feliziani F. 2021. Control programs for infectious bovine rhinotracheitis (IBR) in European countries: An overview. Anim. Health Res. Rev. 22:136-146. https://doi.org/10.1017/s1466252321000116
JIA S, Huang X, Li H, Zheng D, Wang L, Qiao X, Jiang Y, Cui W, Tang L, Li Y, Xu Y. 2020. Immunogenicity evaluation of recombinant Lactobacillus casei W56 expressing bovine viral diarrhea virus E2 protein in conjunction with cholera toxin B subunit as an adjuvant. Microb. Cell Fact. 19:e186. https://doi.org/10.1186/s12934-020-01449-3
JIANG L, Zhang G, Wang P, Niu X, Liu Q, Zhang S, Gao W, Li Y. 2024. Simultaneous detection of bovine viral diarrhea virus (BVDV) and bovine herpesvirus 1 (BoHV-1) using recombinase polymerase amplification. Sci. Rep. 14:e10169.
https://doi.org/10.1038/s41598-024-56869-7
LARGHI M. 2018. Comparative study in the control of bovine viral diarrhea. Anim. Health Res. Rev. 19:125-133. https://doi.org/10.1017/S1466252318000129
LIN J, Chen RH, Yang MJ, Zhu YM, Xue F. 2021. Isolation and molecular characterization of bovine herpesvirus 4 from cattle in mainland China. Arch. Virol. 166(2):619-626. https://doi.org/10.1007/s00705-020-04896-w
LIU CY, Guo H, Zhao HZ, Hou LN, Wen YJ, Wang FX. 2022. Recombinant bovine herpesvirus type I expressing the bovine viral diarrhea virus E2 protein could effectively prevent infection by two viruses. Viruses. 14(8):e1618.
https://doi.org/10.3390/v14081618
NETTLETON P, Russell G. 2017. Update on infectious bovine rhinotracheitis. In Pract. 39(6):255-272. https://doi.org/10.1136/inp.j2226
OGUEJIOFOR CF, Thomas C, Cheng Z, Wathes DC: 2019. Mechanisms linking bovine viral diarrhea virus (BVDV) infection with infertility in cattle. Anim. Health Res. Rev. 20(1):72-85. https://doi.org/10.1017/S1466252319000057
RIMAYANTI R, Khairullah AR, Lestari TD, Moses IB, Utama S, Damayanti R, Mulyati S, Raharjo HM, Kusala MKJ, Raissa R, Wibowo S, Abdila SR, Fauzia KA, Yanestria SM, Fauziah I, Siregar JE. 2024. Infectious bovine rhinotracheitis: Unveiling the hidden threat to livestock productivity and global trade. Open Vet. J. 14(10):2525-2538.
https://doi.org/10.5455/OVJ.2024.v14.i10.3
SOLTAN MA, Wilkes RP, Elsheery MN, Elhaig MM, Riley MC, Kennedy MA. 2015. Circulation of bovine viral diarrhea virus-1 (BVDV-1) in dairy cattle and buffalo farms in Ismailia Province, Egypt. J. Infect. Dev. Ctries. 9(12):1331-1337.
https://doi.org/10.3855/jidc.7259
WANG Y, Pang F. 2024. Diagnosis of bovine viral diarrhea virus: an overview of currently available methods. Front. Microbiol. 15:e1370050.
https://doi.org/10.3389/fmicb.2024.1370050
WELLENBERG GJ, Verstraten ER, Belak S, Verschuren SBE, Rijsewijk FAM, Peshev R, Van-Oirschot JT. 2001. Detection of bovine herpesvirus 4 glycoprotein B and thymidine kinase DNA by PCR assays in bovine milk. J. Virol. Methods. 97:101-112. https://doi.org/10.1016/s0166-0934(01)00341-x
Publicado
Número
Sección

Esta obra está bajo licencia Creative Commons Attribution-NonCommercial 4.0 International License.