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ABSTRACT

Rumen fermentation (RF) is an anaerobic redox process carried out by a complex microbial community that
generates volatile fatty acids (VFASs), the primary energy source for ruminants. However, RF also produces
methane, a greenhouse gas that negatively impacts the sustainability of livestock systems. This has
intensified interest in strategies aimed at improving rumen energy efficiency by increasing VFA production
while simultaneously reducing methane emissions per unit of fermented feed. Electrofermentation (EF) has
emerged as an innovative alternative to address these limitations. This approach integrates microbial
fermentation with the application of electrical currents through electrodes that act as electron sinks or
sources. By modifying the microbial redox balance and overcoming thermodynamic constraints, EF
redirects electron flow toward metabolic pathways that enhance VFA synthesis. In vitro studies have
reported increases of over 80% in VFA production, accompanied by significant reductions in biogas
generation and increased microbial biomass. Collectively, these findings position EF as a promising strategy
to improve feed efficiency and reduce the environmental impact of livestock production, although its in vivo
implementation still requires further technical and methodological research.

Keywords: rumen fermentation, electrofermentation, rumen microbiota.

RESUMEN
La fermentacién ruminal (FR) es un proceso anaerobio de 6xido-reduccién realizado por una comunidad
microbiana compleja, mediante el cual se generan acidos grasos volatiles (AGV), principal fuente de
energia para los rumiantes. Sin embargo, la FR también produce metano, un gas de efecto invernadero
gue afecta la sostenibilidad de los sistemas ganaderos. Esto ha impulsado el interés en estrategias que
aumenten la eficiencia energética del rumen, lo que favorece una mayor produccién de AGV y reduce
simultaneamente las emisiones de metano por unidad de alimento fermentado. La electrofermentacion (EF)
puede considerarse como una alternativa innovadora para abordar estas limitaciones. Este enfoque
combina fermentacién microbiana con la aplicacion de corrientes eléctricas mediante electrodos que
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funcionan como sumideros o fuentes de electrones. Al modificar el balance redox microbiano y superar
restricciones termodinamicas, la EF redirige el flujo de electrones hacia rutas metabdlicas que incrementan
la sintesis de AGV. Estudios in vitro han demostrado aumentos superiores al 80% en la produccién de
AGV, acompafiados de una reduccidn significativa del biogas y un incremento en biomasa microbiana. En
conjunto, estos avances posicionan a la EF como una estrategia prometedora para mejorar la eficiencia
alimentaria y disminuir el impacto ambiental de la ganaderia, aunque su implementacion in vivo requiere
mayor investigacion técnica y metodoldgica.

Palabras clave: fermentacion ruminal, electrofermentacién, microbiota ruminal.

INTRODUCTION

Ruminants are mammals capable of converting fibrous feed into high—biological value
products for human consumption, such as meat and milk. This remarkable ability is
supported by a complex digestive system, particularly the rumen-reticulum, which
functions as a continuous fermentation chamber where feed is broken down by a diverse
community of resident microorganisms. Ruminal fermentation is a redox-driven process
that supplies energy for microbial growth and generates volatile fatty acids (VFAs), the
main energy source for the host animal. However, this process also produces greenhouse
gases such as carbon dioxide (CO,) and methane (CH,) (Romagnoli et al., 2017). Meeting
the growing global demand for meat and dairy products while minimizing environmental
impact represents a major challenge for livestock production systems. One of the most
promising strategies to address this challenge is to enhance the energetic efficiency of
ruminants—that is, to improve how effectively they convert ingested feed into usable
energy for body maintenance and the production of milk and meat. Achieving higher feed-
to-energy conversion efficiency would ultimately support greater food production for
human consumption while reducing the environmental footprint of ruminant agriculture.

In view of the fact that ruminal fermentation is a central driver of the energetic metabolism
of ruminants, a wide range of research efforts has focused on understanding this process
and redirecting it toward greater efficiency. Several strategies have been tested, including
adjustments in diet formulation, the use of high-quality concentrates, feed additives,
antibiotics (now largely discontinued), genetic improvement, and even vaccine
development. However, most of these approaches have proven either impractical or
insufficiently effective, or they have disrupted the energetic balance of the rumen,
ultimately leading to reduced animal productivity (Lan & Yang, 2019). A new perspective
currently under evaluation involves manipulating the metabolic pathways of rumen
microorganisms through electrofermentation (EF). EF is a process that integrates
microbial electrochemical techniques (MET) with conventional fermentation systems. It
relies on the application of anodic or cathodic electrical currents to microbial cultures,
helping to overcome redox constraints and enhancing the production of specific
metabolites such as volatile fatty acids (VFAs) (Moscoviz et al., 2016; Sravan et al., 2019).
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The rumen as a bioreactor

The rumen is a large chamber where ingested feed undergoes anaerobic microbial
digestion. During this process, the rumen functions as a continuous-culture system
operating under well-defined conditions that critically regulate the types, abundance, and
biochemical activities of its resident microorganisms. This system closely resembles a
“‘chemostat,” in which water and nutrients are continuously supplied to support microbial
growth, while waste products and fermentation end-products are steadily removed. (Liu
et al., 2021; Morais & Mizrahi, 2019) (Figure 1). The end-products of fermentation, such
as volatile fatty acids (VFAs), are removed either by absorption through the rumen wall
into the bloodstream or by eructation in the case of biogas (Nagaraja, 2016). Maintaining
these conditions is essential for the survival of rumen microorganisms, for preserving the
integrity and function of the ruminal epithelium, and ultimately for ensuring the overall
health and productivity of the ruminant (Romagnoli et al., 2017).
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Figure 1. The rumen as a bioreactor

Fermentation in the rumen

To sustain ruminal fermentation, the rumen’s microbial ecosystem consists of a symbiotic
community of diverse anaerobic microorganisms, including representatives of all three
domains of life: Eubacteria (bacteria), Archaea (methanogens), and Eukarya (protozoa
and fungi), as well as viruses (Seshadri et al., 2018; Newbold & Ramos-Morales, 2020).
In general terms, ruminal fermentation can be divided into three levels of metabolic events,
each carried out by different trophic groups. In the first trophic level (I), the structural
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components of the plant cell wall are colonized by microorganisms specialized in
hydrolyzing complex organic polymers—such as cellulose and hemicellulose—into their
monomeric forms (Leahy et al., 2022; Sanjorjo et al., 2023).

In the second trophic level (lIl), soluble sugars are fermented by most members of the
rumen microbiota through multiple metabolic pathways. This process results in the
production of VFAs and gases such as carbon dioxide and molecular hydrogen, the latter
of which must be carefully regulated to avoid inhibiting microbial metabolism and
disrupting the metabolic cascade. During the oxidation of sugars into intermediates such
as acetyl-CoA, NAD" is reduced to NADH, which must then be reoxidized back to NAD*
to sustain continuous fermentation. The balance of the NAD*/NADH ratio influences
specific reactions within the metabolic network, and its regulation plays a central role in
shaping the overall fermentation profile (Gonzalez-Cabaleiro et al., 2015).

In the third trophic level (II), microorganisms utilize electrons in the form of hydrogen. At
this stage, methanogenic archaea consume most of the H, generated during the second
phase of fermentation. Under the anaerobic conditions of the rumen, classical electron
acceptors such as oxygen are absent. As a result, hydrogenotrophic methanogens
primarily use CO, as an electron acceptor. Methanogenic archaea can also reduce
methylated compounds (methylotrophic methanogenesis) or acetate (acetoclastic
methanogenesis) to methane, although these pathways are less common. These
microorganisms are essential for maintaining electron sinks within the rumen and serve
as a key driving force for the entire trophic network (Figure 2) (Sikora et al., 2017; Morais
& Mizrahi, 2019).

Through this fermentative process, rumen microorganisms obtain the energy required for
their maintenance, growth, and reproduction. Because ruminal fermentation occurs under
strictly anaerobic conditions, and no terminal electron acceptor such as oxygen is
available, ATP is generated primarily through substrate-level phosphorylation or through
proton gradients established by the energy differences between electron donors and
acceptors via chemiosmosis (Kracke et al.,, 2015; Vassilev et al.,, 2021). These
thermodynamic limitations under anoxic conditions lead to lower energy yields and,
consequently, reduced biomass production (Buckel, 2021).

Therefore, maintaining redox balance and conserving energy within rumen
microorganisms depend on the availability of an electron acceptor. This requirement has
posed a major challenge for efforts aimed at redirecting ruminal fermentation toward
increased VFA production and reduced methane emissions (Leahy et al., 2022).

There are several approaches aimed at improving the efficiency with which ruminants
convert feed into usable energy, with the goal of increasing food availability while reducing
environmental impact. Some of these strategies include dietary manipulation, the use of
antibiotics, the application of plant secondary metabolites, genetic selection, and other
targeted interventions (Firkins & Mitchel 2023; Krodliczewska et al., 2023).
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However, all of these approaches present notable limitations, highlighting the need for
new alternatives capable of increasing VFA production while reducing the release of
biogases such as methane (CH,) and carbon dioxide (CO,). One emerging and innovative
alternative is the manipulation of ruminal fermentation through electrofermentation (EF),
a strategy that helps regulate electron flow within the fermentation process (Aguilar-
Gonzalez et al., 2022; Lopez-Hernandez et al., 2023).
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Figure 2. Metabolic cascades of the rumen represented by three stages of metabolic events:
macromolecule hydrolysis (I), monomer fermentation (Il), and electron sinking (lll)

Electrofermentation
Electrofermentation (EF) is a biotechnological process that integrates microbial

electrochemical techniques with conventional fermentation systems. In this approach,
microbial metabolism is modulated through electrochemical reactions to drive the
fermentation of organic substrates and enhance the production of reduced metabolites of
productive interest, such as volatile fatty acids (VFAs) (Moscoviz et al., 2016; Schievano

et al., 2016).
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In these types of processes, controlled potentials and solid electrodes are used, which
can function as electron sinks (anodes) or electron sources (cathodes), thereby
modulating the redox reactions that occur during fermentation. These electrical currents
may originate from external power sources or can be generated internally by electroactive
microorganisms.

As mentioned earlier, ruminal fermentation generates electrons as a result of the redox
reactions that occur within microbial metabolic pathways. The application of electrical
currents enables the generation of additional electrons. These electrons can be
incorporated into microbial metabolism, increasing the efficiency of energy production and
stimulating metabolic rates. In addition, the presence of an anode—acting as an electron
sink—can help overcome the thermodynamic constraints imposed by internal redox
imbalances. This can lead to an unbalanced electrofermentative process or bacterial
electrosynthesis, ultimately resulting in an increased formation of reduced compounds
(Bhagchandanii et al., 2020; Mukherjee et al., 2021).

The effectiveness of an electrofermenter will depend primarily on (i) interactions among
microorganisms, (ii) dissolved electron carriers present in the medium, (iii) interactions
between microorganisms and electrode surfaces through cellular mechanisms of
extracellular electron transfer (EET), (iv) the substrate, and (v) the configuration of the
electrochemical cell (Bajracharya et al., 2022). The efficiency with which microorganisms
transfer electrons to the anode, or among themselves, depends on their extracellular
electron transfer (EET) mechanisms. To date, detailed information is available for only a
limited number of microorganisms capable of performing these processes (Yee et al.,
2020).

Ruminal electrofermentation to improve efficiency and mitigate emissions

Most research aimed at manipulating ruminal fermentation has focused on modifying
electron flow within redox reactions to reduce methane production without compromising
animal health and nutrition, and ideally, to improve overall production efficiency. However,
overcoming the thermodynamic limitations of this process has proven to be a major
challenge. A full understanding of the flow of key metabolites within the rumen, the
interactions between microorganisms and these metabolites, and the physiology,
microbiology, and biochemistry of the microorganisms involved is still lacking (Lan &
Yang, 2019; Leahy et al., 2022).

Recent studies have shown that applying electrofermentation (EF) to in vitro rumen fluid
can increase VFA production by up to 80%, while simultaneously reducing total biogas
output and enhancing microbial biomass. These changes are associated with an
intracellular redox imbalance caused by shifts in the NAD*/NADH ratio. EF, through the
use of solid electrodes that accept electrons derived from oxidative reactions, has proven
to be an effective strategy for altering the NADH/NAD™* balance and generating proton
gradients sufficient for ATP synthesis. As a result, biomass yields increase, leading to
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greater production of microbial protein available to the ruminant (Choi & Sang, 2016;
Buckel, 2021; Chandrasekhar et al., 2021; Bhagchandanii et al., 2020; Aguilar-Gonzalez
et al., 2022; Lopez-Hernandez et al., 2023).

These advances represent a novel and efficient strategy for modifying ruminal
fermentation in a way that directly influences electron flow toward greater productive
efficiency. In practice, this could translate into a reduced environmental impact by lowering
greenhouse gas emissions, as well as improved feed efficiency if applied in vivo.
Altogether, this approach offers an important contribution to addressing the economic and
environmental sustainability challenges facing the livestock sector.

CONCLUSIONS
Implementing electrofermentation (EF) in animal production faces significant challenges,
including the design of systems that can be applied in vivo and the need to develop new
methodologies or tools to measure electron flows. It is also necessary to evaluate the
long-term effects of EF on animal health and productivity.
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