Efecto de la administración de eCG y GnRH-análogo en el desempeño reproductivo de cerdas primíparas destetadas bajo condiciones de alta carga calórica

Autores/as

Palabras clave:

eCG, GnRH, desempeño reproductivo, estrés calórico, cerdas primíparas

Resumen

Con el objetivo de determinar el efecto de la aplicación de eCG y GnRH-análogo en el desempeño reproductivo de cerdas primíparas que estuvieron en lactación en condiciones de alta carga calórica ambiental, se realizó un estudio durante los meses de junio a octubre. La temperatura ambiental promedio durante el periodo de estudio fue de 30.9 °C y una humedad relativa de 74.6 % (ITH de 83.4 puntos). Se utilizaron 100 cerdas primíparas, a las que se les asignó uno de dos tratamientos (T): T1 (Grupo testigo; n = 50); cerdas que no recibieron tratamiento hormonal posdestete y T2 (eCG + GnRH; n = 50); cerdas que recibieron la aplicación i.m. de 1000 UI de eCG 24 h posdestete y 50 µg de GnRH al momento de la manifestación de celo. Las cerdas que recibieron la aplicación de 1000 UI de eCG tuvieron un menor (p<0.05) intervalo destete-celo (129.41 vs. 218.54 h); sin embargo, la tasa de parto fue menor (p<0.05) en las cerdas que recibieron el tratamiento combinado de 1000 UI de eCG 24 h posdestete y 50 µg de GnRH al momento de la manifestación de celo (66.66 vs. 81.25 %). El tamaño y peso de la camada no fue modificado (p>0.05) por el tratamiento. Los resultados obtenidos permiten concluir, que la aplicación i.m. de 1000 UI eCG 24 h posdestete, a cerdas primerizas destetadas bajo condiciones de alta carga calórica, disminuye el intervalo destete celo, pero la administración combinada de 1000 UI de eCG 24 h posdestete y 50 µg de GnRH al momento de la manifestación de celo disminuye la tasa de parto en cerdas primíparas metabólicamente comprometidas bajo condiciones de alta carga calórica ambiental.

Citas

AHERNE FX, Kirkwood RN. 1985. Nutrition and sow prolificacy. Journal of Reproduction and Fertility. (Suppl. 33):169-183.

https://www.researchgate.net/publication/19250763_Nutrition_and_sow_prolificacy

AUVIGNE V, Leneveu P, Jehannin C, Peltoniemi O, Salle E. 2010. Seasonal infertility in sows: a five-year field study to analyze the relative roles of heat stress and photoperiod. Theriogenology. 74:60-66. https://doi.org/10.1016/j.theriogenology.2009.12.019

BAIDOO SK, Aherne FX, Kirkwood RN, Foxcroft GR. 1992. Effect of feed intake during lactation and after weaning on sow reproductive performance. Canadian Journal of Animal Science. 72(4):911-917. https://doi.org/10.4141/cjas92-103

BAKER JE. 2004. Effective environmental temperature. Journal of Swine Health and Production. 12:140-143.

https://www.aasv.org/shap/issues/v12n3/v12n3ptip.html#:~:text=The%20temperature%20the%20animal%20experiences,convection%2C%20conduction%2C%20and%20radiation.

BERTOLDO MJ, Holyoake PK, Evans G, Grupen CG. 2011. Seasonal effects on oocyte developmental competence in sows experiencing pregnancy loss. Animal Reproduction Science. 124:104–111. https://doi.org/10.1016/j.anireprosci.2011.02.012

BLOEMHOF S, Mathur PK, Knol EF, van der Waaij EH. 2013. Effect of daily environmental temperature on farrowing rate and total born in dam line sows. Journal of Animal Science. 91:2667-2679. https://doi.org/10.2527/jas.2012-5902

BRÜSSOW K P, Schneider F, Kanitz W, Rátky J, Kauffold J, Wähner M. 2009. Studies on fixed-time ovulation induction in the pig. Society of Reproduction and Fertility supplement. 66:187–195. https://pubmed.ncbi.nlm.nih.gov/19848281/

BRÜSSOW KP, Jöchle W, Hühn U. 1996. Control of ovulation with a GnRH analog in gilts and sows. Theriogenology. 46:925–934. https://doi.org/10.1016/S0093-691X(96)00258-0

CLARKE H, Dhillo WS, Jayasena CN. 2015. Comprehensive review on kisspeptin and its role in reproductive disorders. Endocrinology and Metabolism. 30:124-141. https://doi.org/10.3803/EnM.2015.30.2.124

COSTERMANS N, Teerds KJ, Middelkoop A, Roelen B, Schoevers EJ, van Tol H, Laurenssen B, Koopmanschap RE, Zhao Y, Blokland M, van Tricht F, Zak L, Keijer J, Kemp B, Soede NM. 2019. Consequences of negative energy balance on follicular development and oocyte quality in primiparous sows. Biology of Reproduction. 102(2):388–398. https://doi.org/10.1093/biolre/ioz175

COSTERMANS NGJ, Teerds KJ, Middelkoop U, Roelen BAJ, Schoevers EJ, van Tol HTA, Laurenssen B, Koopmanschap RE, Zhao Y, Blokland M, van Tricht F, Zak L, Keijer J, Kemp B, Soede NM. 2020. Consequences of negative energy balance on follicular development and oocyte quality in primiparous sows. Biology of Reproduction. 102(2): 388–398. https://doi.org/10.1093/biolre/ioz175

DE JONG E, Kauffold J, Engl S, Jourquin J, Maes D. 2013. Effect of a GnRH analogue (Maprelin) on the reproductive performance of gilts and sows. Theriogenology. 80:870–7. https://doi.org/10.1016/j.theriogenology.2013.07.012

DE RENSIS F, Gherpelli M, Superchi P, Martelli P, Kirkwood RN. 2005. Relationship between backfat depth and plasma leptin during lactation and sow reproductive performance after weaning. Animal Reproduction Science. 90:95-100. https://doi.org/10.1016/j.anireprosci.2005.01.017

DE RENSIS F, Ziecik AJ, Kirkwood RN. 2017. Seasonal infertility in gilts and sows: Aetiology, clinical implications, and treatments. Theriogenology. 96:111-117.

https://doi.org/10.1016/j.theriogenology.2017.04.004

DRIANCOURT MA, Locatelli A, Prunier A. 1995. Effects of gonadotrophin deprivation on follicular growth in gilts. Reproduction Nutrition Development. 35(6):663-73.

https://doi.org/10.1051/rnd:19950606

FARMER SW, Papkoff H. 1979. Immunochemical studies with pregnant mare serum gonadotropin. Biology of Reproduction. 21:425–31.

https://doi.org/10.1095/biolreprod21.2.425

GARCÍA E. 2004. Modificaciones al Sistema de Clasificación Climática de Köppen. 3ª ed. México D.F. Pp. 91. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/book/83

GOURDINE JL, Bidanel JP, Noblet J, Renaudeau D. 2006. Effects of breed and season on performance of lactating sows in a tropical humid climate. Journal of Animal Science. 84(2):360–369. https://doi.org/10.2527/2006.842360x

GOURDINE JL, Renaudeau D, Noblet J, Bidanel JP. 2004. Effects of season and parity on performance of lactating sows in a tropical climate. Animal Science. 79:273–282. https://doi.org/10.1017/S1357729800090135

GUTHRIE HD, Bolt DJ, Cooper BS. 1990. Effects of gonadotropin treatment on ovarian follicle growth and granulosa cell aromatase activity in prepuberal gilts. Journal of Animal Science. 68:3719-3726. https://doi.org/10.2527/1990.68113719x

HAN T, Björkman S, Soede NM, Oliviero C, Peltoniemi OAT. 2020. IGF-1 concentration patterns and their relationship with follicle development after weaning in young sows fed different pre-mating diets. Animal. 1–9. https://doi.org/10.1017/S1751731120000063

HU P, Yang H, Lv B, Zhao D, Wang J, Zhu W. 2019. Dynamic changes of fatty acids and minerals in sow milk during lactation. Journal of Animal Physiology and Animal Nutrition. 103:603–611.https://doi.org/10.1111/jpn.13040

LUCY MC. 2008. Functional differences in the growth hormone and insulin-like growth factor axis in cattle and pigs: Implications for post-partum nutrition and reproduction. Reproduction in Domestic Animals. 43 (Suppl. 2):31–39. https://doi.org/10.1111/j.1439-0531.2008.01140.x

HULTÉN F, Valros A, Rundgren M, Einarsson S. 2002. Reproductive endocrinology and postweaning performance in the multiparous sow. Part 1. Influence of metabolic status during lactation. Theriogenology. 58:1503–1517. https://doi.org/10.1016/s0093-691x(02)01059-2

INEGI. 2009. Anuario Estadístico del Estado de Sinaloa. Instituto Nacional de Estadística, Geografía e Informática. Aguascalientes, Aguascalientes, México.

https://estadisticas.sinaloa.gob.mx/documentos/AnuarioEstad%C3%ADsticoSinaloa2009.pdf

JOHNSTON LJ, Ellis M, Libal GW, Mayrose VB, Weldon WC, and NCR-89 Committee on Swine Management. 1999. Effect of room temperature and dietary amino acid concentration on performance of lactating sows. Journal of Animal Science. 77:1638–1644. https://doi.org/10.2527/1999.7771638x

KIRKWOOD RN, Baidoo SK, Aherne FX. 1990. The influence of feeding level during lactation and gestation on the endocrine status and reproductive performance of second parity sows. Canadian Journal of Animal Science. 70:1119-1126.

https://doi.org/10.4141/cjas90-135

KIRKWOOD RN, Kauffold J. 2015. Advances in breeding management and use of ovulation induction for fixed-time AI. Reproduction in Domestic Animals. 50:85–89. https://doi.org/10.1111/rda.12524

KOKETSU Y, Dial GD, Pettigrew JE, Xue J, Yang H, Lucia T. 1998. Influence of lactation length and feed intake on reproductive performance and blood concentrations of glucose, insulin and luteinizing hormone in primiparous sows. Animal Reproduction Science. 52:153–163. https://doi.org/10.1016/S0378-4320(98)00093-1

LOPES TP, Padilla L, Bolarin A, Rodriguez-Martinez H, Roca J. 2020. Ovarian Follicle Growth during Lactation Determines the Reproductive Performance of Weaned Sows. Animals. 10:1012; https://doi.org/10.3390/ani10061012

LOPES TP, Sanchez-Osorio J, Bolarin A, Martinez EA, Roca J. 2013. Relevance of ovarian follicular development to the seasonal impairment of fertility in weaned sows. The Veterinary Journal. 199:382-386. https://doi.org/10.1016/j.tvjl.2013.11.026

LOPES TP, Sanchez-Osorio J, Bolarin A, Martinez EA, Roca J. 2014. Relevance of ovarian follicular development to the seasonal impairment of fertility in weaned sows. The Veterinary Journal. 199:382–386. https://doi.org/10.1016/j.tvjl.2013.11.026

LUCY MC, J Liu, K Boyd, CJ Bracken. 2001. Ovarian follicular growth in sows. Reproduction. 58 (Suppl.):31–45.

https://www.biosciproceedings.org/bp/0016/pdf/bp0016cpr3.pdf

MADER TL, Davis MS, Brown-Brandl T. 2006. Environmental factors influencing heat stress in feedlot cattle. Journal of Animal Science. 84:712-719. ISSN: 0021-8812; http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1622&context=animalscifacpub

OMTVEDT IT, Nelson RE, Edwards RL, Stephens DF, Turman EJ. 1971. Influence of heat stress during early, mid and late pregnancy of gilts. Journal of Animal Science. 32:312-317. https://doi.org/10.2527/jas1971.322312x

PEARODWONG P, Tretipskul C, Nicoline M. Soede NM, Tummaruk P. 2019. Factors affecting estrus and ovulation time in weaned sows with induced ovulation by GnRH administration in different seasons. The Journal of Veterinary Medical Science. 81(11):1567–1574. https://doi.org/10.1292/jvms.18-0429

PEARODWONG P, Tretipskul C, Panyathong R, Tummaruk P. 2020. Factors influencing pre-ovulatory follicle diameter and weaning-to-ovulation interval in spontaneously ovulating sows in tropical environment. Reproduction in Domestic Animals. 55:1756–1763. https://doi.org/10.1111/rda.13836

PELTONIEMI OA, Heinonen M, Leppävuori A, Love RJ. 1999. Seasonal effects on reproduction in the domestic sow in Finlandia herd record study. Acta Veterinaria Scandinavica. 40:133-144.

https://www.researchgate.net/publication/12696599_Seasonal_Effects_on_Reproduction_in_the_Domestic_Sow_in_Finland_-_A_Herd_Record_Study

PELTONIEMI OA, Love RJ, Klupiec C, Evans G. 1997. Effect of feed restriction and season on LH and prolactin secretion, adrenal response, insulin and FFA in group housed pregnant gilts. Animal Reproduction Science. 49:179-190.

https://doi.org/10.1016/S03784320(97)00062-6

PELTONIEMI OA, Virolainen JV. 2006. Seasonality of reproduction in gilts and sows. Society for Reproduction and Fertility.; (Suppl. 62):205-218.

https://pubmed.ncbi.nlm.nih.gov/16866319/

REVEL FG, Ansel L, Klosen P, Saboureau M, Pevet P, Mikkelsen JD, Simonneaux V. 2007. Kisspeptin: a key link to seasonal breeding. Reviewes in Endocrine and Metabolic Disorders. 8:57- 65. https://doi.org/10.1007/s11154-007-9031-7

SÁ FMF, Crespilho AM, Santos JEP, Perry GA, Baruselli PS. 2010. Ovarian follicle diameter at timed insemination and estrous response influence likelihood of ovulation and pregnancy after estrous synchronization with progesterone or progestin-based protocols in suckled Bos indicus cows. Animal Reproduction Science. 120:23–30.

https://doi.org/10.1016/j.anireprosci.2010.03.007

SCHLEGEL W, Krebs R, Stenzel S, Wähner M. 1978. Effect of various injection times in ovulation stimulation in gilts following previous biotechnical puberty induction. Arch Exp Veterinarmed. 32(6):863-867. https://pubmed.ncbi.nlm.nih.gov/571265/

SMITH JT, Acohido BV, Clifton DK, Steiner RA. 2006. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. Journal of Neuroendocrinology. 18:298-303.

https://doi.org/10.1111/j.1365-2826.2006.01417.x

SOEDE NM, Langendijk P, Kemp B. 2011. Reproductive cycles in pigs. Animal Reproduction Science. 124:251–258. https://doi.org/10.1016/j.anireprosci.2011.02.025

STERNING M, Rydhmer L, Eliasson L, Einarsson S, Anderson K. A. 1990. Study on primiparous sows of the ability to show standing oestrus and to ovulate after weaning. Influences of loss of body weight and back fat during lactation and of litter size, litter weight gain and season. Acta Veterinaria Scandinavica. 31:227-236.

https://www.researchgate.net/publication/20894589_A_study_on_primiparous_sows_of_the_ability_to_show_standing_oestrus_and_to_ovulate_after_weaning_Influences_of_loss_of_body_weight_and_backfat_during_lactation_and_of_litter_size_litter_weight_gain_an

TAST A, Peltoniemi OA, Virolainen JV, Love RJ. 2002. Early disruption of pregnancy as a manifestation of seasonal infertility in pigs. Animal Reproduction Science. 74:75-86. https://doi.org/10.1016/S0378-4320(02)00167-7

WEGNER K, Lambertz C, Das G, Reiner G, Gauly M. 2016. Effects of temperature and temperature-humidity index on the reproductive performance of sows during summer months under a temperate climate. Animal Science Journal. 87: 1334-1339. https://doi.org/10.1111/asj.12569

XU Y, Thacker PA, Kirkwood RN, Rajkumar K. 1995. Effects of metabolic hormones and growth factors on forskolin and dibutyryl adenosine 30,50-cyclic monophosphate induced steroidogenic responses by porcine granulosa cells in vitro. Canadian Journal of Animal Science. 75:85-91. https://cdnsciencepub.com/doi/pdf/10.4141/cjas95-011

ZHOU D, Zhuo Y, Che L, Lin Y, Fang Z, Wu D. 2014. Nutrient restriction induces failure of reproductive function and molecular changes in hypothalamus-pituitary-gonadal axis in postpubertal gilts. Molecular Biology Reports. 41:4733-4742.

https://doi.org/10.1007/s11033-014-3344-x

Publicado

2024-06-20

Número

Sección

Artículos de Investigación